545 research outputs found

    posterior end mark 2 (pem-2),pem-4,pem-5, andpem-6: Maternal Genes with Localized mRNA in the Ascidian Embryo

    Get PDF
    AbstractThe posterior–vegetal cytoplasm of an ascidian egg contains maternal factors required for pattern formation and cell specification of the embryo. We report here the isolation and characterization of cDNA clones for novel maternal genes,posterior end mark 2(pem-2),pem-4,pem-5, andpem-6. We obtained these clones from a cDNA library ofCiona savignyifertilized egg mRNAs subtracted with gastrula mRNAs by examining the localization of the corresponding mRNAs of randomly selected clones by whole-mountin situhybridization. As in the case ofpem, all of these mRNAs were localized in the posterior–vegetal cytoplasm of the egg, and they later marked the posterior end of early embryos. The predicted amino acid sequence suggested that PEM-2 contains a signal for nuclear localization, an src homology 3 (SH3) domain, and a consensus sequence of the CDC24 family guanine nucleotide dissociation stimulators (GDSs). PEM-4 has a signal for nuclear localization and three C2H2-type zinc finger motifs, while PEM-5 and PEM-6 show no similarity to known proteins. These results provide further evidence that the ascidian egg contains maternal messages that are localized in the posterior–vegetal cytoplasm

    Drive Video Analysis for the Detection of Traffic Near-Miss Incidents

    Full text link
    Because of their recent introduction, self-driving cars and advanced driver assistance system (ADAS) equipped vehicles have had little opportunity to learn, the dangerous traffic (including near-miss incident) scenarios that provide normal drivers with strong motivation to drive safely. Accordingly, as a means of providing learning depth, this paper presents a novel traffic database that contains information on a large number of traffic near-miss incidents that were obtained by mounting driving recorders in more than 100 taxis over the course of a decade. The study makes the following two main contributions: (i) In order to assist automated systems in detecting near-miss incidents based on database instances, we created a large-scale traffic near-miss incident database (NIDB) that consists of video clip of dangerous events captured by monocular driving recorders. (ii) To illustrate the applicability of NIDB traffic near-miss incidents, we provide two primary database-related improvements: parameter fine-tuning using various near-miss scenes from NIDB, and foreground/background separation into motion representation. Then, using our new database in conjunction with a monocular driving recorder, we developed a near-miss recognition method that provides automated systems with a performance level that is comparable to a human-level understanding of near-miss incidents (64.5% vs. 68.4% at near-miss recognition, 61.3% vs. 78.7% at near-miss detection).Comment: Accepted to ICRA 201

    Detection of transgenic and endogenous plant DNA in blood and organs of Nile tilapia, Oreochromis niloticus fed a diet formulated with genetically modified soybean meal

    Get PDF
    Anxiety regarding the fate of ingested transgenic DNA in farmed fish fed genetically modified (GM) soybean meal (SBM) has been raised with regard to human consumption. The objective of this study was to detect possibility of gene transfer of transgenic and endogenous DNA fragments in Nile tilapia (Oreochromis niloticus) blood and organs after consumption of a GM SBM diet. Nile tilapias with an average weight of 75.0 g were fed diets containing 48% GM or non-GM SBM for 21 days. During this period, a GM SBM diet was fed to fish for 12 days, and then switched to feed with non-GM SBM for 9 days for determining the residual span of the transferred cauliflower mosaic virus (CaMV) 35S promoter fragment. Blood, spleen, liver, intestine, kidney, and muscle tissues were taken (n = 10) every three days during the feeding period. Total DNA was extracted from the samples and analyzed by polymerase chain reaction (PCR) for determining the presence of a 108-bp fragment of the CaMV 35S promoter and a 144-bp fragment of the soybean chloroplast-specific DNA. Low-copy chloroplast-specific DNA fragment was detected in all organ and tissue samples and the majority of intestinal samples of fish fed GM SBM diet. Similarly, a low number and faint signals of the CaMV 35S promoter fragments were detected in all organ samples except muscle of fish fed the GM SBM diet, while none were detected 3 days after changing to a non-GM SBM diet. A very low frequency of transmittance to muscle and organs of fish was confirmed. It is recognized that the low copy number of transgenic DNA in the GM SBM diet is a challenge to their detection in tissues. These results suggested that transgenic DNA would be processed in the gastrointestinal tract in a similar manner with conventional plant DNA
    corecore